-
트리에 대한 이론적인 부분은 세 번에 걸쳐 포스팅한 바 있다.
Tree
트리구조는 아주 중요한 알고리즘이라 세 번에 나누어서 진행할 예정이다. Tree... 이게 얼마나 사기(?)냐 하면은 트리를 이용하여 데이터를 관리할 경우 데이터 탐색에 필요한 시간이 O(n^2)에서 O(
with611.tistory.com
Tree - Binary Search Tree
Binary Tree 중, 아래의 조건을 만족하는 Tree이다. 1. 루트노드의 왼쪽 서브트리의 노드는 루트노드보다 작거나 같아야 한다. 2. 루트노드의 오른쪽 서브트리의 노드는 루트노드보다 커야한다. BST로
Tree - Heap, B-Tree
Heap Heap은 complete binary tree의 일종으로 추가로 아래의 조건을 만족하는 tree이다. 모든 노드는 그 자식노드(나아가 Descendant)보다 반드시 크거나 같아야 한다. 즉, 데이터를 넣을 때 마다 루트노드쪽
이진 트리 (Binary Search Tree)를 구현해보자.
탐색은 중위 순회 (Inorder Traversal)로 구현한다.
TreeNode.hpp TreeNode.cpp Tree.hpp Tree.cpp (1) Tree.cpp (2) main.cpp
댓글